Lecture 5: Connect (+1)

How the friendship we form connect us?
Why we are within a few clicks on Facebook?

COMS 4995-1: Introduction to Social Networks
Thursday, September 20th
* Milgram’s “small world” experiment

* It’s a “combinatorial small world”
* It’s a “complex small world”
* It’s an “algorithmic small world”
 - The failure of uniformly augmented grids
 “short chains may exist but can’t be found easily”
 - Biased (i.e., homophily) augmentations
Formal construction: start from k-dimen lattice/grid
1. Connect nodes at distance p in a regular lattice
2. Connect each node to q other nodes, chosen with a biased probability
3. p=q=1 to simplify

The small-world phenomenon: An algorithmic perspective.
How to model augmentation bias

* Formal construction:
 1. Connect nodes at distance p in a regular lattice
 2. Connect each node to q other nodes, chosen with a biased probability

$$
\mathbb{P} [u \sim v] = \frac{1}{\sum_{v \neq u} 1 / \|u-v\|^r} \quad \frac{1}{\|u-v\|^r}
$$

* r may be called the clustering coefficient

* If a node is twice further, probability is 2^r times less

The small-world phenomenon: An algorithmic perspective.
Impact of clustering coefficient

Small values of r
Approaches uniform augmentation

Large values of r
Approaches original lattice
Can we break the lower bound?

(a) Yes, finding a neighborhood of t becomes easier

A PRIORI NOT TRUE

− It is easier only if you are already near the target
− In general, it can take a larger number of steps
(b) Yes, for another reason
- All positions are not equal, hence progress is possible
- As shortcut are used recursively, probability increases
- So we need to study the sequence of progress
Augmented lattice (dimension k)

Navigable small world!

dist. alg need $O(\log^2(N))$ steps

Combinatorial Small world
(Short paths exist)
dist. alg. need $N^{(k-r)/(k+1)}$ steps

Not a small world
(Short paths do not exist)
alg. need $N^{(r-k)/(r-(k-1))}$ steps

Theorem 1.

- When $r = 1$, greedy routing uses in expectation at most $O(\ln(N)^2)$ of steps.
- When $0 \leq r < 1$, for any p and q, then as n grows any decentralized algorithm uses in expectation at least $\Omega(N^{1-\frac{r}{2}})$
- When $r > 1$, for any p and q, then as n grows any decentralized algorithm uses in expectation at least $\Omega(N^{\frac{r-1}{r}})$
* We assume dimension $k=1$
* For each case ($r<1$, $r>1$, $r=1$) we use two steps
 - **STEP1**: Obtain a bound on the probability
 \[
 P[u \leadsto v] = \frac{1}{\sum_{w \neq u} \frac{1}{\|u-w\|^r}} .
 \]
 - **STEP2**: Characterize the progress of greedy routing
 Introducing nodes visited, denoted U_1, U_2, \ldots, U_i
 the destination of shortcuts, denoted X_1, X_2, \ldots, X_i
STEP 1:

We have when dimension $k=1$:

\[
\sum_{j=1}^{[N/2]-1} \frac{1}{j^r} \leq \sum_{u \neq v} \frac{1}{\|u-v\|^r} \leq 2 \sum_{j=1}^{N} \frac{1}{j^r}
\]
We have when dimension $k=1$:

\[
\sum_{j=1}^{\lfloor N/2 \rfloor - 1} \frac{1}{j^r} \leq \sum_{v \neq u} \frac{1}{\|u - v\|^r} \leq 2 \sum_{j=1}^{N} \frac{1}{j^r}
\]

- We can then understand why $r=1$ is a critical case
- $r<1$: series **diverge**

 It behaves roughly as N^{1-r} for large N
- $r>1$: series **converge**

 The remaining series (all terms at distance $>m$) behave roughly as $1/m^{r-1}$ when m is large.
Case $r < 1$ (1/3)

* **STEP1:** \[\sum_{j=1}^{\lfloor N/2 \rfloor - 1} \frac{1}{j^r} \leq \sum_{v \neq u} \frac{1}{\|u - v\|^r} \leq 2 \sum_{j=1}^{N} \frac{1}{j^r} \text{ (divergent series)} \]

- Which implies
 \[\sum_{v \neq u} \frac{1}{\|u - v\|^r} \geq \sum_{j=1}^{\lfloor N/2 \rfloor - 1} \frac{1}{j^r} \geq \int_{1}^{\lfloor N/2 \rfloor} \frac{1}{x^r} \, dx \geq \frac{1}{1 - r} \left((\lfloor N/2 \rfloor)^{1-r} - 1 \right) \]

- When N is sufficiently large this implies

\[
\text{For } N \geq 2^\frac{3-r}{1-r}, \sum_{v \neq u} \frac{1}{\|u - v\|^r} \geq c_1 N^{1-r} \text{ where } c_1 = \frac{1}{2(1-r)2^{1-r}}.
\]
STEP 1:

\[\sum_{j=1}^{\lfloor N/2 \rfloor - 1} \frac{1}{j^r} \leq \sum_{v \neq u} \frac{1}{\|u - v\|^r} \leq 2 \sum_{j=1}^{N} \frac{1}{j^r} \]

- Which implies

\[\sum_{v \neq u} \frac{1}{\|u - v\|^r} \geq \sum_{j=1}^{\lfloor N/2 \rfloor - 1} \frac{1}{j^r} \geq \int_{1}^{\lfloor N/2 \rfloor} \frac{1}{x^r} \, dx \geq \frac{1}{1 - r} \left((\lfloor N/2 \rfloor)^{1-r} - 1 \right) \]

- Hence, we have whenever \(N \) is large

\[\mathbb{P} [u \sim v] \leq \frac{1}{c_1 N^{1-r}} \]
STEP 2: Use the same proof as the uniform augmented lattice

- We introduce \(I_l = \{ u \in V \mid |u - t| \leq l \} \)
- We observe
 \[
 \mathbb{P}\left[\bigcup_{i=1,...,n} \{ X_i \in I_l \} \right] \leq \sum_{i=1,...,n} \mathbb{P}[X_i \in I_l] \leq \frac{n2l}{c_1N^{1-r}}.
 \]

- Choosing \(l = n = \lambda N^{\frac{(1-r)}{2}} \) this probability is \(<1/4\)
- Concluded that expected number of steps is at least \(\text{cst } N^{(1-r)/2} \)
Case $k=1$ and $r=1$ (1/3)

\[\sum_{j=1}^{[N/2]-1} \sum_{v \neq u} \frac{1}{j^r} \leq \frac{1}{\|u-v\|^r} \leq 2 \sum_{j=1}^{N} \frac{1}{j^r} \] (slowly divergent)

- In particular we can bound the normalizing constant

\[\sum_{v \neq u} \frac{1}{\|u-v\|} \leq 2(1 + \sum_{j=2}^{N} \frac{1}{\|j\|}) \leq 2(1 + \int_1^{N} \frac{1}{x} dx) \leq 2(1 + \ln(N)) \leq 2(\ln(3N)) . \]

- So that $P[u \text{ connected to } v]$ at least

\[\frac{1}{\|u-v\| \times 2 \ln(3N)} \]
Can we break the lower bound?

Example: k=1 (augmented lines) with r=1
- If we start from u such that distance \(d(u,t) = l \)
- How many nodes are in interval \(I_{l/2} \)?
- For v in \(I_{l/2} \), can we lower bound \(P[u \rightarrow v] \)?
Example: $k=2$ (augmented lattice) with $r=2$

- If we start from u such that distance $d(u,t)=l$
- How many nodes are in interval $I_{l/2}$?
- For v in $I_{l/2}$, can we lower bound $P[u\rightarrow v]$?
The critical case

- Assume $r=k$ (dimension of the grid)
 - A neighborhood of t of radius $d/2$
 - Contains $(d/2)^k$ nodes
 - Each may be chosen with probability roughly $1/(3d/2)^k$
 - Growth of ball compensates probability decreases!

- Harmonic distribution.

The small-world phenomenon: An algorithmic perspective.
Case $r=1 \,(2/3)$

* **STEP1:** $P[u \text{ conn. } v] \geq \frac{1}{||u - v|| \times 2 \ln(3N)}$

* **STEP2:** Let U_1, U_2, \ldots, U_j be nodes visited by the walk
 - We say U_i is “in phase j” if $2^j \leq ||U_i - t|| \leq 2^{j+1}$
 - U_1, the starting point, is in phase $j_0 \leq \ln(N)/\ln(2)$
 - Let S_j the # of steps of greedy routing in phase j
 - Total number of steps: $S_{j_0} + S_{j_0-1} + \ldots + S_1$
 - We only need to bound $E[S_j]$ for all j
Case r=1 (2/3)

* STEP1: \(P[u \text{ conn. } v] \geq \frac{1}{||u - v|| \cdot 2 \ln(3N)} \)

* Main argument
 - Assuming \(U_i \) in phase \(j \), how likely is \(U_{i+1} \) in phase \(j' < j \)?
 * At least \(P[U_i \text{ connected to } v \text{ such that } |v-t| \leq 2^j] \)
 - There are at least \(2^j \) nodes satisfying \(|v-t| \leq 2^j \)
 - Each of them is at distance at most \((3/2)2^{j+1} \) from \(U_i \)
 - Hence, we have \(\sum_{v, ||v-t|| < 2^j} \frac{1}{2 \ln(3N)(3/2)2^{j+1}} \geq \frac{2^j}{(2 \ln(3N)(3/2)2^{j+1})} \geq \frac{1}{6 \ln(3N)} \).
 - This implies \(E[S_j] \leq 6 \ln(3N) \) proving the results
Theoretical follow ups

* Is the analysis of greedy routing tight?
 - Yes, greedy routing performs in $\Omega(\log^2 n)$

* Can we find path as short as $\log(n)$ (shortest path)?
 - Yes, with extra information on neighboring nodes
 - Or another augmentation

* Can we build augmentation for an infinite lattice?
 - See homework exercise (check tomorrow night)
Can we augment other graphs?
- $G=(V,E)$ (i.e. a lattice) with distance known
- Random augmentation adds one shortcut per node
 Is routing on G + shortcuts used incidentally efficient?

Indeed all these graphs are polylog augmentable:
- Bounded ball growth, Doubling dimensions
- Bounded “width” (Trees, bounded treewidth graphs)

What about all graphs? Lower Bound $O(n^{1/\sqrt{\ln(n)}})$
Practical follow up

Can we observe harmonic distribution?
- Yes, using closeness rank instead of distance

Can we prove it emerge?
- Recent results
- Through rewiring, mobility

Geographic routing in social networks.
D. Liben-Nowell et. al. PNAS (2005)
Additional Slides
Milgram’s experiment prove that social networks are navigable
 - individuals can take advantage of short paths
 - with basic information
This is at odds with uniform random graphs
The key ingredients to explain navigability
 - A space easy to route (e.g. grid, trees, etc.).
 - A subtle harmonic augmentation (e.g. ball radius).
Case \(r > 1 \) (1/2)

* STEP1:

 \[
 \sum_{j=1}^{[N/2]-1} \frac{1}{j^r} \leq \sum_{v \neq u} \frac{1}{\|u - v\|^r} \leq 2 \sum_{j=1}^{N} \frac{1}{j^r} \quad \text{(convergent ser.)}
 \]

 - Bound \(P[v \text{ is at least distance } m \text{ from } u] \) faraway

 \[
 \sum_{v \neq u, \|u - v\| > m} \frac{1}{\|u - v\|^r} \leq 2 \sum_{j=m+1}^{N} \frac{1}{j^r} \leq 2 \left(\int_{m}^{N} \frac{1}{x^r} \, dx \right) \leq \frac{2}{(r - 1)m^{r-1}}.
 \]
STEP2:

- $P[u \text{ connected to } v \text{ at distance } > m] < \frac{2}{(r-1)m^{r-1}}$
- $P[X_1 \text{ or } X_2 \text{ or } \ldots \text{ or } X_n \text{ with distance } > m] < \frac{2n}{(r-1)m^{1-r}}$
- $P[X_1 \text{ and } X_2 \text{ and } \ldots \text{ and } X_n \text{ distance } < m] > 1$

we call this event “small shortcuts”

- On this event, if initial distance $> N/4$ then greedy routing needs at least $\min(n,N/4m)$ steps

- Choosing $m = N^{1/r}$ and $n = (2/4(r-1)) \cdot N^{(r-1)/r}$ ensures that “small shortcuts” has proba $> 3/4$ hence that expected steps in greedy routing is $\text{cst} \cdot N^{(r-1)/r}$